1=0,999…という、文系の人には理解しにくい話です。

スポンサード リンク
スポンサード リンク

1=0,999…?

「1」と、「0,999…(9が無限に続く)」は、間違いなく違う数ですよね。

「0,999…」は、限りなく「1」に近いけど「1」じゃないという数だと思います。
しかし、数学の世界では、そうじゃないんです。

「1=0,999…」の証明を紹介します。

「1=0,999…」の証明 その1

x=0,999…とする       (1)
両辺に10をかけると
10x=9,999…        (2)
(2)から(1)を引くと
9x=9
両辺を9で割ると
x=1
x=0,999…なので、
1=0,999…となる

「1=0,999…」の証明 その2

1/3=0,3333…ですね
この両辺に3をかけると
1=0,999…
となる

ね、狐につままれたようでしょ?でも、数学においては「1=0,999…」は正しいんです。

文系の人は納得がいかないかもしれませんね。
管理人も、いまだに釈然としません。(笑)
そういうもんだ、と考えるしかないですね。

(07/03/23)

次の記事 長さや重さの単位について に進む

  

このページの更新状況

(07/03/23)掲載

スポンサード リンク